

Figure 1. Temperature dependence of hfcc values of the methylene protons in the cyclohexadienyl (1a) and 3,6-bis(trimethylsilyl)cyclohexadienyl (1b) radicals.

Figure 2. Relative energy of the out-of-plane distortion for cyclohexadienyl radicals.

These radicals can generate relatively high concentrations to give as good a signal to noise ratio as studying the temperature dependence of the ESR spectra. Figure 1 shows the temperature dependence of the proton hfec at 6 -position of both $\mathbf{1 a}$ and $\mathbf{1 b}$, and the value of $\delta a_{6} / \delta T$ for $\mathbf{1 a}$ is calculated to be $-6.6 \mathrm{mG} /{ }^{\circ} \mathrm{C}$.

The negative temperature coefficient observed in this study should originate in the out-of-plane deformation of the methylene carbon in the cyclohexadienyl radical (I). Thus, the hfcc of the axial hydrogen $\left(\mathrm{H}_{\mathrm{a}}\right)$ should increase with enhanced out-of-plane deformation at higher temperature while that of the equatorial hydrogen $\left(\mathrm{H}_{e}\right)$ should decrease. However, the average value is expected to exhibit a small net decrease by INDO calculations. ${ }^{4 g}$ Therefore, the present study shows clearly that the cyclohexadienyl radical is planar but vibrates between bent structures.

Figure 1 contains another interesting feature that the proton hfcc at 6 -position of $\mathbf{1 b}$ shows small but definitely positive temperature dependence ($\delta a_{6} / \delta T=+2.6 \mathrm{mG} /{ }^{\circ} \mathrm{C}$). This can be interpreted in terms of the preferred conformation in which the 6 -trimethylsilyl group occupies the axial position at the bent structure at low temperature (II). Such a preferred conformation should result from $\sigma-\pi$ conjugation between the $\mathrm{C}-\mathrm{Si}$ bond and the π system. ${ }^{6}$ Unrestricted CNDO/ 2 calculations ${ }^{7}$ for I and II also support the conclusion on the equilibrium structures of cyclohexadienyl radicals. ${ }^{8}$ Thus, as Figure 2 shows, the parent cyclohexadienyl has the energy minimum at $\theta=0^{\circ}$, where θ is the angle of out-of-plane distortion from the planar carbon framework, while the energy minimum of the 6 -silylcyclohexadienyl radical is at $\theta=+4^{\circ} .9$

Acknowledgment. We thank Toshiba Silicone Co., Ltd., for gifts of chlorosilanes.

References and Notes

(1) Chemistry of Organosilicon Compounds. 97.
(2) (a) H. Sakurai, I. Nozue and A. Hosomi, Chem. Lett., 129 (1976); (b) J. Am. Chem. Soc., 98, 8279 (1976).
(3) (a) D. Griller, K. Dimroth, T. M. Fyles, and K. U. ingold, J. Am. Chem. Soc., 97, 5526 (1975); (b) P. G. Cookson, A. G. Davies, and B. P. Roberts, J. Chem. Soc. Chem. Commun., 289 (1976).
(4) A number of cyclohexadienyl radicals have been investigated by ESR spectra. See inter alia, (a) H. Fischer, Kolloid-Z., 180, 64 (1962); (b) R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 38, 773 (1963); (c) ibid., 39, 2147 (1963); (d) W. T. Dixon and R. O. C. Norman, Proc. Chem. Soc., London, 97 (1963); (e) J. Chem. Soc., 4857 (1964); (f) S. DiGregorio, M. B. Yim, and D. E. Wood, J. Am. Chem. Soc., 95, 8455 (1973); (g) M. B. Yim and D. E. Wood, ibid., 97, 1004 (1975).
(5) A Varian Associates E-12 spectrometer was used with a $9.5-\mathrm{GHz}$ microwave bridge.
(6) (a) T. Kawamura and J. K. Kochi, J. Am. Chem. Soc., 94, 649 (1972); (b) M. C. R. Symons, ibid., 94, 8589 (1972); (c) Tetrahedron Lett., 793 (1975); (d) D. Griller and K. U. Ingold, J. Am. Chem. Soc., 95, 6459 (1973); (e) ibid., 96, 6715 (1974); (f) H. Sakurai, T. Uchida, and M. Kira, J. Organomet. Chem., 107, 15 (1976).
(7) J. A. Popie and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill, New York, N.Y., 1970.
(8) The minimized energy geometry determined by the INDO calculation ${ }^{49}$ was used for the present calculations.
(9) In this connection, $\delta a\left({ }^{29} \mathrm{Si}\right) / \delta T$ would be very interesting to measure. However, the signal to noise ratios of spectra were unfortunately not as good as such a measurement.

Mitsuo Kira, Hideki Sakurai*
Department of Chemistry, Faculty of Science Tohoku Unicersity. Sendai 980. Japan
Received September 27, 1976

Additions and Corrections

Idealized Polytopal Forms. Description of Real Molecules Referenced to Idealized Polygons or Polyhedra in Geometric Reaction Path Form [J. Am. Chem. Soc., 96, 1748 (1974)]. E. L. Muetterties and L. J. Guggenberger, Central Research Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898.

For the $C_{3 v}$ polyhedron in Figure 10, the calculated edge lengths and dihedral angles should be $q=1.212 r, s=1.268 r$. $t=1.321 r, u=1.670 r$, and $\delta \prime s=16.2^{\circ}$.

In Table IV, the ideal angles (δ 's) for the $C_{3 c}$ model should be $16.2,16.2$, and 16.2°.

